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Rheology and Thermodynamics from Nonequilibrium 
Molecular Dynamics t 

Denis  J. Evans 2 

We review some of the recent developments in nonequilibrium molecular 
dynamics (NEMD) simulations of fluids. One of the areas which has been 
profoundly influenced by this new technique is the study of systems undergoing 
steady planar Couette flow. Attention has been focused on developments which 
have taken place since the 1982 Conference on Nonlinear Fluid Behaviour. 
Since that time many questions concerning the formal justification of NEMD 
algorithms have been successfully answered. There have also been extensions of 
the range of properties studied by the technique. 
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1. I N T R O D U C T I O N  

In this review, we concent ra te  on deve lopment s  tha t  have taken place since 
the 1982 Conference on  N o n l i n e a r  F lu id  Behavior  E l ] .  At tha t  t ime, 
N E M D  s imula t ions  of  p l ana r  Coue t te  flow had  revealed that  even simple 
a tomic  fluids can, under  sui table  condi t ions ,  exhibi t  a wide var ie ty  of non-  
N e w t o n i a n  behavior .  The  L e n n a r d - J o n e s  fluid had  been shown to be 
viscoelastic,  shear  thinning,  and  capab le  of d i sp lay ing  no rma l  stress effects 
[2 ] .  All  of  these proper t ies  are wel l -known,  exper imenta l ly  observable  
effects in molecu la r ly  complex  n o n - N e w t o n i a n  fluids. The  s imula t ions  also 
revealed an assoc ia ted  p r o p e r t y  which is a lmos t  imposs ib le  to observe 
exper imenta l ly ,  namely,  shear  d i l a t a n c y - - t h e  expans ion  of fluids with 
increas ing shear  rate  under  i so the rmal  i sobar ic  condi t ions .  Before the 
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advent of NEMD, some rheologists had fallen into the habit of assuming 
that shear thickening and shear dilatancy always accompanied each other 
[3]. The two terms had been widely confused in the literature. NEMD 
proved that the effects were distinct by showing that atomic fluids were 
shear thinning but dilatant. 

By 1982, NEMD simulations had shown that the non-Newtonian dis- 
persion relations were apparently nonanalytic [1, 2], the first correction to 
Newtonian constitutive relations typically depending upon the square root 
of the strain rate. At first this observation was received with some joy 
because the analytic form for these non-Newtonian constitutive relations 
was is agreement with the predictions of mode coupling theory [4-7]. 
However, this happy circumstance was short-lived when it was realized 
that the observed size of these effects was orders of magnitude larger than 
theoretical predictions [2, 8 ]. 

At this time, a number of doubts were raised as to the validity of the 
NEMD algorithms themselves [1]. In 1982, the formal basis of NEMD 
simulations was poorly understood. This is one of the main themes of the 
present paper. We summarize the presently understood basis of NEMD, 
including such matters as the theory of thermostats as well as the for- 
mulation of equations of motion which will efficiently and correctly drive a 
hydrodynamic flow. 

We also summarize some of the results of new NEMD simulations 
which have been performed which might help to shed light on the basic 
dilemma in this field: Why is it that simulation agrees with mode-coupling 
functional forms for nonlinear constitutive relations but is in major dis- 
agreement as to the amplitudes of these effects? 

The last matter that we discuss is the role played by nonlinear irrever- 
sible thermodynamics in trying to understand nonequilibrium steady states 
far from equilibrium. In contrast to mode-coupling theory, this extended 
thermodynamics has led to quantitatively accurate predictions of some of 
the properties of steady states. In particular, this theory has derived 
apparently correct expressions for the interrelations among isobaric shear 
dilation, the shear-induced, isochoric increase in pressure, the shear- 
induced decrease in temperature in steady states with the same internal 
energy, and the increase in the specific heats with shear rate. Ther- 
modynamics has important consequences for the stability of shear flow at 
low shear rates in two-dimensional systems. 

2. T H E O R Y  OF A L G O R I T H M S  

In 1982, there were two algorithms that had been developed to drive 
shear flow, the homogeneous shear method E9] and the Dolls tensor 
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algorithm [10]. The homogeneous shear method was basically an adaption 
of periodic boundary conditions to shear flow. The Dolls tensor method, 
on the other hand, employed a fictitious external field to drive the flow. 
However, it still employed time-varying periodic boundary conditions. The 
Dolls tensor method could be proved to yield the correct behavior close to 
equilibrium using linear response theory [10]. Further from equilibrium 
both methods seemed to yield consistent results but there was no proof of 
the correctness of the Dolls tensor method in this regime. 

By 1982, Hoover et al. [11] and Evans [12] had realized how to for- 
mulate equations of motion for which the temperature or the internal 
energy is a constant of the motion. These equation could be used in 
equilibrium and nonequilibrium simulations. However, at that time no 
theory existed which could escribe the thermostate response of non- 
equilibrium systems. The isothermal equations of motion for a field-free 
system are 

dq/dt = p/m (1) 

dp/ dt = F - ap 

where 

= ~ F.  P/Z p2 (2) 

In a series of papers Evans and Morriss [13-15] developed a formal 
theory of the dynamical behavior of thermostatted systems. They showed 
by Dyson decomposition techniques that equilibrium time correlation 
functions for the Navier-Stokes transport coefficients are in the ther- 
modynamic limit, independent of whether the dynamics is generated by 
Newtonian equations of motion or the so-called "Gaussian isothermal" 
equations of motion [14]. 

In 1984, Nose proposed an alternative dynamics [16, 17] which per- 
mits fluctuations in the system kinetic energy. Nose showed that at 
equilibrium, in an ergodic system, his dynamics generates the canonical 
ensemble. The field-free equilibrium distribution function for isothermal 
dynamics is, in contrast, the isothermal distribution fv [14], 

exp( - flq~)/f dE 6 ( K -  Ko) exp( - fl~) fT 6(K- Ko) 

where K and ~ are the kinetic and potential energies, and 

fl = 3N/(2Ko) (3) 

In 1985, Hoover [18] reformulated the Nose system of dynamics in a form 
which is much more suitable for computer simulation. In the form derived 
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by Hoover, the equations are suitable for thermostating nonequilibrium 
systems. In field-free conditions, the Nose-Hoover (NH) equations are 

d~dt = p/m 

dp/dt = V -- (p (4) 

where 

= ( K / K o  - 1 ) /~  

z is an undetermined time constant which controls the time scale of kinetic 
energy fluctuations. It should be chosen to match a microscopic relaxation 
time, otherwise the NH equations of motion will be "stiff" [19]. 

Very recently, Evans and Holian [19] have proved that in the ther- 
modynamic limit, equilibrium time correlation functions formed under NH 
dynamics, Gaussian isothermal dynamics, or Newtonian dynamics are all 
equivalent. Knowing the relations between equilibrium time correlation 
functions is important because it allows one to compare the thermostatted 
linear response of systems to an external field. Holian and Evans also 
showed that although NH dynamics is often convenient for theoretical 
analysis, it appears to be considerably less efficient and accurate in 
simulations than are the Gaussian schemes. To achieve a comparable 
accuracy in viscosity calculations, for example, they found that even when 
the choice of z was optimal, NH dynamics consumed four times as much 
computer time as did the corresponding Gaussian isothermal method [19]. 

The generalization of linear response theory to thermostatted systems 
is not straightforward [20]. This is because in the presence of a thermostat, 
the usual form of the Liouville equation is not valid. The Liouville operator 
itself turns out to be non-Hermitian, Morriss and Evans succeeded in 
calculating the linear response of Gaussian isothermal systems [15]. The 
resultant susceptibility is formally identical to the adiabatic case except that 
the time evolution is generated by the field-free isothermal equations of 
motion. It takes the form of an isothermal equilibrium time correlation 
function. Similarity if an external field is applied to a system thermostated 
by the NH thermostat, the linear response is determined by a field-free 
equilibrium time correlation function generated under NH dynamics. Since 
both of these equilibrium time correlation functions are equivalent in the 
thermodynamic limit and, of course, equal to the corresponding Newtonian 
correlation function, we know that in the linear regime at least, the 
response is independent of the thermostatting mechanism [15]. 

The general procedure [20, 21] for generating an NEMD algorithm is 
to devise an external field and, in particular, its coupling to the system of 
interest, so that for a chosen phase variable the susceptibility to the exter- 
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nal field matches the Green-Kubo relation for the desired thermal trans- 
port coefficient. This has proven to be the most efficient, number-indepen- 
dent way of calculating thermal transport coefficients such as viscosity and 
thermal conductivity [22]. This procedure does not uniquely define an 
NEMD algorithm for a given thermal transport coefficient. There are many 
synthetic external fields capable of generating a specific linear susceptibity. 
The procedure also does not usually result in equations of motion which 
can be generated from a Hamiltonian. The adiabatic forms of the favored 
algorithms for shear viscosity and thermal conductivity cannot be 
generated from Hamiltonians [20]. 

In spite of this, one property of Hamiltonian dynamics is usually 
preserved. In the absence of thermostats, the equations of motion preserve 
phase space (df /dt=O).  This condition is called the adiabatic incom- 
pressibility of phase space, A I F  [19 21]. 

The linear theory of NEMD seems to be essentially complete. In the 
nonlinear domain our knowledge is much more rudimentary. There are no 
known analogues of the Green-Kubo relations for any of the Navier- 
Stokes transport coefficients in the nonlinear domain. Nonlinear response 
theory seems to lead to many as yet unresolved difficulties [15, 23]. In 
spite of these difficulties, we know that two forms of the so-called SLLOD 
algorithm for viscosity are exact arbitrarily far from equilibrium [24]. This 
is due to the high degree of symmetry of planar Couette flow. The SLLOD 
equations of motion for isothermal planar Couette flow, O u J @  = 7, are 

2 = px/m + 7Y 

j~ = py/m 

= p z/m 

b x = F x - ~ p y - ~ p x  

by = Fy - ~py 

[~ z =  F z - ~ p z  

(5) 

where the thermostating multiplier ~ is 

As mentioned above, these equations must be implemented under the 
usual periodic shearing boundary conditions for shear flow. It is a simple 
matter to modify these equations for flow deformations other than planar 
Couette. The momenta p appearing in these equations are measured 
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relative to the local streaming velocity in the fluid. This is a considerable 
convenience for calculating thermodynamic properties. The thermostatting 
multiplier can be chosen so that the thermodynamic internal energy of the 
system is a constant of the motion. In proving that the SLLOD algorithm 
gives an exact description of shear flow far from equilibrium, Evans and 
Morriss [24] also showed that the Dolls tensor method is incorrect at 
second order in the shear rate. 

New and interesting results concerning the nonlinear behavior of gases 
composed of periodic images of two hard spheres have been derived by 
Hoover [25] and Morriss [26]. Although comparatively simple, the ther- 
mostatted response of this system can be calculated analytically. It is hoped 
that when analyzed, this system may serve as a guide to developing a useful 
theory of the nonlinear response, 

3. NEMD SIMULATION RESULTS 

By 1982, it was established that both shear viscosity and bulk viscosity 
exhibit what are known as "enhanced long-time tail behavior" [2, 10]. A 
summary of these is given in Table I. Although the early results were 
obtained using what we would now refer to as primitive algorithms, sub- 
sequent refinements of techniques have not basically altered the con- 
clusions. For example, prior to 1982, all thermostatting was done by ad 
hoc rescaling I-9] of the second moment of the velocity distribution at 
every time step during the course of the simulation. Repeating these 
calculations using Gaussian or NH thermostats leads to essentially iden- 
tical results [12, 19]. 

The calculations of shear thinning behavior have been extended to 
four dimensions, leading to the same puzzle as did the earlier results in 
lower dimensionality--agreement with the mode-coupling functional forms 
but massive disagreement on amplitudes [27]. In 1983, Evans and Gaylor 
[-28"] showed that the second rank-order tensor in a diatomic molecular 
fluid also appears to exhibit enhanced long-time tail effects. This 
calculation is important for two reasons. First, it demonstrates that enhan- 
ced long-time tail behavior can be seen from simulations which employ 
fixed orthogonal periodic boundaries. For both viscosities the NEMD 
simulations must be carried out using time-varying periodic boundaries, 
and it had been suggested that they may have been creating spurious 
effects. Second, this calculation shows that whatever is responsible for these 
"enhanced" effects it is capable of coupling to other macroscopic properties 
of suitable tensorial character. 

In this connection, NEMD simulations have now been carried out for 
all the Navier-Stokes transport coefficients--shear and bulk viscosity, ther- 
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Table I. Limiting Behavior of Non-Newtonian 
Constitutive Relations a 
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d=2 

~/(y) = - A  log(Bj  

p(y) = p(0) + A), log(B~/) 

E(y) = E(0) + A 7 log(By) 

d = 3  

q(7) =* / (0 ) -  A~/y 

p ( j :  p(0) + Ay,/7 
E(~) = E(0) + Ay~/~ 
,(o~) = ,(0) - A~/~ 
~(~): ~(o) - A~/k 

d = 4  

;7(7) - 0(0) - A7 

p(y) =p(0)  + A 7 

E ( J  = E(0) + A), 

All results pertain to the limiting behavior as y, ~o, k tend 
to zero. Thermodynamic instabilities prevent the obser- 
vation of the logarithmic divergence of r/ in two dimen- 
sions. For shear rates less than the critical value at which 
shear dilatancy would become negative, an apparently 
"Newtonian" regime is entered in which the planar 
velocity itself is unstable. The four-dimensional result for 
q is as expected from mode-coupling theory, however, the 
pressure and energy exponents, which had always been 
one order greater in 7 (see two and three dimensions for 
comparison), are unusual. Thermodynamics predicts that 

the pressure exponent must be less than 2, independent of 
the dimensionality. 

mal conductivity, and self-diffusion [29]. When using reasonably accurate 
interaction potentials, all calculations yield predicted transport coefficients 
which agree with experiment within statistical uncertainties. These 
calculations also show that enhanced long-time tail behavior seems con- 
fined to the viscosities (and related transport coefficients as mentioned 
above). It seems clear that these "enhancements" are somehow related to 
the glass transition. If a transport coefficient diverges at that transition, it 
will, in all probability, exhibit enhanced behavior. Recently, Keyes [30] 
has used these ideas in a scaling theory of the long-time tail. He has 
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suggested that the reason the shear viscosity diverges at the glass transition 
is precisely because the amplitudes of the long-time tails diverge there. 
Unfortunately, there are severe difficulties in performing NEMD 
simulations of shear viscosity within the metastable fluid region of the 
phase diagram. It is difficult to perform direct checks of Keyes' ideas using 
conventional simulation methods. 

There has also been interest in flows at very high shear rates. By "very 
high" we mean shear rates so high that the flows become athermal, with 
temperature ceasing to have much significance for the nature of the flow. 
Under these extreme conditions, Erpenbeck 1,-31] discovered that fluids 
enter an ordered phase with particles "slip-streaming" into strings to 
minimize the entropy production. This is an example of a shear-induced 
phase change. 

This was not the first shear-induced phase change to be observed. In 
1982, we [32] noticed that crystals could be forced to melt by shearing 
while maintaining the system at a temperature and density at which a 
crystaline phase would be stable if the system were at equilibrium. This 
observation from NEMD simulations seemed to be an exact analogue of 
the experimental observation of shear-induced melting by Clark and Acker- 
son [33]. 

NEMD techniques have advanced to such a degree that we are begin- 
ning to see the results of simulations for molecularly complex materials. 
The generalization of the methods to polyatomic fluids is relatively 
straightforward 1-34, 35]. Early simulations on shear flow in a diatomic 
liquid were carried out in 1981 [36], while Brown and Clarke have perfor- 
med calculations for hexane 1-37]. 

4. THERMODYNAMIC PREDICTIONS 

In 1980, Hanley and Evans 1,38-40] developed an extension of ther- 
modynamics applicable to shearing, nonequilibrium steady states. They 
postulated that, outside the linear regime, thermodynamic potentials 
depend upon the magnitude of the thermodynamic driving force in 
addition to the usual equilibrium state variables, temperature and density. 
These ideas were not new, being almost as old as thermodynamics itself. In 
more recent times, much of the formal development of extended irreversible 
thermodynamics has been carried out by Peacock-Lopez and Keizer [4] 
and Lebon et al. [42]. For planar Couette flow, the generalized first law 
was postulated to be 

d E =  dQ - p d V  + ~ dy (7) 
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The second law was postulated to be 

dQ >>. T dS (8) 

The entropy of the system S, like the internal energy E, can be considered 
to be functions S(N, T, V, 7) and E(N, T, V, 7). From these apparently sim- 
ple postulates, a wealth of interrelationships can be derived. One of these 
"Maxwell" relationships was subjected to an accurate test by Evans [12] in 
1983. In performing this test the newly developed refinements to NEMD 
were essential. Evans verified, by computer experiment, the thermodynamic 
prediction that 

dT/dy)E,v = -dE/dy)T, vl/Cv,~ (7) 

where the specific heat at fixed volume and strain rate, C v.~, is defined in 
the usual way as 

C v,~ = dE/dT) v,7 (8) 

NEMD simulations were performed to calculate all derivatives numerically. 
The specific heat as a function of the shear rate was measured from 
simulation data. These data were combined with measured data for 
dT/dT)e,v to predict E(y) at fixed temperature and volume. This prediction 
agreed with subsequent NEMD simulation results for E(7), within 
estimated statistical uncertainties. The calculations required extreme 
precision. The maximum shear-induced energy change was only 5.6 % of 
the equilibrium value of the energy. In spite of this small excess energy, the 
maximum disagreement between the thermodynamic prediction for the 
excess energy and that observed in NEMD was less than 2 % of the excess 
energy. NEMD thus confirmed to high accuracy the thermodynamic 
prediction that the temperature of a shearing system drops as the shear rate 
is increased while keeping the volume and internal energy fixed. To our 
knowledge this is the first time that there has been a quantitative test of 
any of the predictions of nonlinear irreversible thermodynamics. 

Thermodynamic stability theory makes a number of predictions con- 
cerning the sign of second-order thermodynamic quantities. For a steady 
state to be stable the specific heat must, of course, be positive, dp/dV)r.~ 
must be negative and d~/dT)T,v must be positive. The latter condition will 
always be satisfied if a fluid is always positively shear dilatant. 

For two-dimensional systems mode-coupling theory predicts [4-7] 
negative shear dilatancy in a finite range of shear rates ~, ~> 0, about 
equilibrium. In early two-dimensional simulations for small systems 
(N<  100), negative dilatancy had actually been observed [43 ]. The mode- 
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coupling constitutive relation P(7) ~ 7 In 7 was consistent with all the low- 
shear rate data. In 1984, Evans and Morriss [-44], however, found in much 
larger two-dimensional simulations (N~3584),  that flow instabilities 
"screen out" the negative dilatancy region and the corresponding mode- 
coupling logarithmic divergence of the shear viscosity. 

Another prediction from thermodynamic fluctuation theory is that if 
the leading term in the shear dilatancy constitutive relation is 
p(y)=p(O)+pl(T, V)7 m, then the shear dilatancy exponent m must be 
strictly less than 2 [45]. Because of the relationship between dimen- 
sionality and the mode-coupling exponents, one would have expected that 
in four dimensions the viscosity exponent should be 1 and the dilatancy 
exponent exactly 2! (see Table I). In 1984, we [46] carried out simulations 
in a four-dimensional fluid. The mode-coupling exponent for viscosity was 
verified but the observed dilatancy exponent was 1, consistent with ther- 
modynamic constraints. 

We believe that it is quite possible that the high-shear rate phase 
change observed by Erpenbeck [-31] is also consistent with thermodynamic 
predictions. Indeed the instability of normal fluid flow at high shear rates 
had already been predicted from thermodynamic considerations by Hanley 
and Evans in 1982 [40] What is needed now is accurate simulation data to 
show that the onset of the Erpenbeck phase corresponds to the breakdown 
of thermodynamic stability criteria for normal fluid shear. 

5. FUTURE 

Attempts to predict the future course of research are usually doomed 
to failure. Sometimes, however, such attempts do serve the useful purpose 
of highlighting important unresolved problems in a given field. We attempt 
to make a few such comments here. 

We have arrived at the stage where, particularly for studies in the 
linear regime close to equilibrium, we have an efficient armory of NEMD 
simulation techniques for studying heat, mass, and momentum flows in 
dense fluids. For the special case of shear flow, our algorithms are known 
to be correct arbitrarily far from equilibrium. The range of interesting 
problems that can be tackled with these methods is limited only by access 
to computer time. Studies have already begun into turbulence. With 
improvements in computer hardware we can now make a start at 
simulating molecularly complex fluids which are known to be non-New- 
tonian from experimental studies. 

From a theoretical point of view, our greatest need is for a usable form 
of nonlinear response theory. Do steady-state time correlation functions 
have an!r useful hydrodynamic meaning far from equilibrium? In view of 
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the usefulness of Green Kubo relations for devising linear NEMD 
algorithms, are there any corresponding relations for transport far from 
equilibrium? In this context the requirement for usefulness is very impor- 
tant. There is little advantage in knowing a formally exact expression for 
the nonlinear nonequilibrium distribution function if it is so intractible that 
no computational test of its validity can be devised. 

Although much effort has recently gone into trying to understand 
"enhanced long-time tail behavior," there still is no concensus among 
theoreticians regarding their explanation. Keyes' ideas seem to derive the 
greatest support from simulation data. However, Keyes' theory is com- 
pletely phenomenological. Using statistical mechanical theory, is it possible 
to derive Keyes' scaling relations microscopically? If the answer is yes, the 
problem of "enhanced tails" is fundamentally solved. 
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